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We discuss the effects of external stress on the thermal denaturation of homogeneous DNA. Pulling double-
stranded DNA at each end exerts a profound effect on the thermal denaturation, or melting, of a long segment
of this molecule. We discuss the effects on this transition of a stretching force applied to opposite ends of the
DNA, including full consideration of the consequences of excluded volume, the analysis of which is greatly
simplified in this case. We find that in three dimensions the heat capacity acquires a logarithmic dependence on
reduced temperature.
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I. INTRODUCTION

When heated, double-stranded DNA develops regions of
strand separation, known as “denaturation bubbles” �1�. As
the temperature increases, these bubbles grow in size and
proliferate. The culmination of this process is complete sepa-
ration of the strands—that is, the complete thermal denatur-
ation, or melting, of DNA, a transition of significant biologi-
cal and technological importance. Among the most important
theoretical approaches to this process is a collection based, or
mathematically related, to an underlying model introduced
by Poland and Scheraga �2–4�. These approaches include the
formalism introduced by Peyrard and Bishop �5� that maps
the process of melting into the disappearance of a bound
state in a one-dimensional potential well. Given the results
obtained with the use of this family of models, the melting
process in the case of homogeneous double-stranded DNA—
that is, the molecule consisting of, say, one strand containing
only cytosines and another containing only guanines—is
well understood. It is known with a relatively high degree of
certainty that an infinitely long molecule of this kind will
undergo a first-order melting transition �6�. This conclusion
follows from the consideration of the effects of self-
avoidance—in particular, the consequences of self-avoidance
with regard to the structure of the vertex connecting an intact
portion of DNA with a denaturation bubble. The treatment of
this process follows from the work of Duplantier and co-
workers �7–9� on the renormalization of vertices for arbitrary
polymer networks.

The sharp transition to the completely denatured state is
an example of a phase transition in a one-dimensional sys-
tem. The existence of such a transition follows from the ef-
fective long-range interaction inherent in the statistical me-
chanics of the denaturation bubbles. The correlations that are
propagated in a bubble result in an effective Boltzmann fac-
tor consistent with the statistical mechanics of an inverse
square Ising model, which is known to undergo a phase tran-
sition �10,11�.

In light of the expectation of a sharp transition in thermo-
dynamic limit in the case of homogeneous DNA, it is note-
worthy that experiments on biological DNA produce melting
curves that belie the expectation of a true phase transition in
the thermodynamic limit. Here, we utilize the standard defi-
nition of a phase transition as nonanalyticity in thermody-

namic functions. What is seen experimentally is, rather, a
collection of highly structured, but nevertheless smooth,
curves when, for instance, the specific heat is measured �see,
e.g., �12��. It appears that the inhomogeneity inherent in the
DNA present in living organisms, which effectively trans-
lates to random inhomogeneity in the context of thermal de-
naturation, profoundly affects the nature of the transition.
This is consistent with the fact that such random inhomoge-
neity is relevant in the sense of the Harris criterion �13,14�. A
brief demonstration that this is so is presented in Appendix
C.

An additional mechanism for the separation of DNA
strands is the application of external forces, which under
appropriate circumstances leads to the “unzipping” �15� or to
the stretching-induced “melting” of the molecule. This pro-
cess has been investigated theoretically �16–20� as has the
interplay between the effects of externally applied force and
thermal fluctuations. In the latter case, the melting process is
modeled as a helix-coil transition, which can be represented
in terms of a system with an intimate relationship to the
one-dimensional Ising model with short-range interactions.
In this approach to the denaturation process, there is no pros-
pect of a thermodynamic transition �21�.

The set of calculations that we report here assumes the
underlying validity of the Poland-Scheraga-based approaches
to DNA melting. We consider melting as the result of the
accumulation and possible merging of denaturation bubbles.
What is added to the picture is a pair of equal and opposite
forces at the two ends of the denaturing strands. Restricting
our focus to homogeneous DNA, we assess the consequences
of this force pair applied to both strands simultaneously.

The effect of the force is twofold. First, as noted by
Rouzina and Bloomfield �19�, for sufficiently strong forces
stretching both strands produces an energetic bias in favor of
denaturation, in that single strands of DNA are more easily
elongated than the intertwined strands of the duplexed ver-
sion of the molecule. On the other hand, DNA melting rep-
resents the classic competition between energy and entropy,
with denaturation bubbles embodying the entropically fa-
vored, energetically costly state. In this article we explore the
effects of stress on the statistics of the denaturation bubble.
We find that stress plays a transformative role on the self-
avoiding interactions and profoundly modifies the analytic
form of the loop-generating function, as compared to the
work of Kafri at al. �6� who consider the effects of self-
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avoidance in the case of the denaturation of DNA that is not
subjected to an external force. Our model predicts a continu-
ous phase transition with heat capacity going as �log t�4 in
the vicinity of the critical point, where t=T /Tc−1 is the re-
duced temperature. We generate the force-temperature phase
diagram and identify regimes in which the imposition of ten-
sion can either inhibit or promote thermal denaturation.

The paper proceeds as follows. In Sec. II we review the
effect of stress on the statistics of a Gaussian chain of equal
and opposite forces applied to both ends and introduce the
mathematical tools for analyzing the phase transition in
terms of the nonanalyticity of the generating functions. In
particular, we recall that the asymptotic statistics of a system
with a fixed number of monomeric units is controlled in the
thermodynamic limit by the singularity in the generating
function lying closest to the origin in the complex fugacity
plane �22�. Given this, we are able to show that almost all
modifications of the generating function that follow from
excluded-volume considerations will exert a negligible effect
on the melting transition, in that the singularities associated
with those modifications are farther away from the origin
than the singularity that arises in the case of the unrestricted
chain. The mitigation of these excluded-volume effects can
be simply understood in terms of the energy cost of a self-
intersection in light of the forces acting on the ends of the
chain. In Sec. III we focus on the one way in which self-
avoidance influences the statistical mechanics of the melting
transition in the interior of a denaturation bubble. We find
that it introduces a logarithmic modification to the mean-
field result for melting exponents. Section IV is devoted to a
general analysis of the influence of self-avoidance and stress
on thermal denaturation of DNA, particularly as it relates to
the phase diagram and key temperature dependences. In Sec.
V we review our analysis and point to its implications.

Finally, we note that we have very recently been made
aware of new theoretical work on subjects that substantially
overlap some of those discussed here �23�.

II. EFFECT OF AN EXTERNAL FORCE ON A FREELY
JOINTED CHAIN

For the purposes of calculating the effect of the external
forces on a single strand of DNA, an appropriate starting
point is the freely jointed chain �FJC�. A long segment of
DNA can be approximated as a chain of many identical mol-
ecules connected with each other at joints which allow for
spatial rotations �see Fig. 1�.

The probability distribution of the end-to-end distance
vector R of such an object is given by

PN�R� = �
n=1

N �� d3ln
1

4�l2���ln� − l�	��3��R − 

n=1

N

ln� , �1�

where N is the number of units of the FJC and l is the length
of each unit. It can be shown that l is equal to twice the
persistence length of the chain �24�.

The second � function on the right-hand side of Eq. �1�
ensures that the vectors ln of the chain elements add up to the
distance vector R.

If a force F is applied at one end of the chain and an equal
and opposite force acts on the other end, then there is an
additional Boltzmann factor weighting the chain configura-
tion sum equal to exp�F ·R /kBT� so that Eq. �1� becomes

PN�R,F� � exp�F · R

kBT
	�

n=1

N �� d3ln
1

4�l2���ln� − l�	
���3��R − 


n=1

N

ln� . �2�

Using the saddle-point approximation, the distribution func-
tion in Eq. �2� can be evaluated as

PN��,f� � � sinh f

f
�N

expN

2
�����

�2� ��
2 �

�expN

2
�����

�2� ��� − ��
��2� , �3�

where we have introduced the dimensionless parameters

f �
Fl

kBT
, � =

R

Nl
. �4�

f is the magnitude of f, �� and �� are the components of �
correspondingly parallel and perpendicular to the dimension-
less force f, and

��
� = coth f −

1

f
. �5�

The details of the calculation are presented in Appendix A.
We have introduced the definitions of the functions �����

�2� �f�
and �����

�2� �f� in Eqs. �A10� and �A11�.
In the limit of weak forces f 	1,

�����

�2� → − 3, �����

�2� → − 3, ��
� →

f

3
, �6�

and the distribution function in Eq. �3� splits into a product
of two terms, one describing the Gaussian chain and the
other the statistical weight due to a small-force perturbation:

PN�R,f� � exp−
3R2

2Nl2�exp�f · R� . �7�

To evaluate the end-to-end separation of the chain under the
influence of the external force we compute �R2�,

FIG. 1. The Gaussian chain in which the monomeric units are
separated by a distance a can be modeled as a freely jointed chain
with link length l, where l is the Kuhn length of the chain.
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�R2� =
� �R�

2 + R�
2 �PN�R,f�dR�dR�

� PN�R,f�dR�dR�

= Nl2� 1

�− �����

�2� �
+

2

�− �����

�2� �
+ N��

�	 . �8�

In the limiting case of weak forces f 	1 from Eq. �8�, with
the use of Eq. �6�, it follows that

�R2� = Nl2�1

3
+

2

3
+ 0	 = Nl2. �9�

Thus the DNA chain behaves as a Gaussian coil, with rms
end-to-end distance proportional to �N.

For strong forces f 
1,

�R2� = Nl2�0 + 0 + N� = �Nl�2, �10�

which corresponds to a fully stretched chain.
We acquire more essential information by constructing the

Fourier-transformed generating function G̃�z ,q , f�, defined
formally in terms of a sum over monomeric units k of the
spatial Fourier transform of configurations.

We find

G̃�z,q,f� = 

k=0

�

zkP̃k�q,f� = 

k

zk� Pk��,f�eiq·�d3�

� 

k
� z

z0
�k

ek�−X�q�
2−X�q�

2 +iY�q��

= �1 −
z

z0
e−X�q�

2−X�q�
2 +iY�q�	−1

� �1 − z/z0 + X�q�
2 + X�q�

2 − iY �q��−1, �11�

where

z0 = � f

sinh f
�a/l

�12�

is the critical fugacity.
The last line of Eq. �11� reflects the fact that we are inter-

ested in the behavior of the generating function when z�z0
and in the limit of small q. For these reasons we set the
prefactors z /z0 in front of last three terms in the last line of
Eq. �11� equal to 1.

Here we have introduced the notation

X��f� = − la/�2�����

�2� � � 0, �13�

X��f� = − la/�2�����

�2� � � 0, �14�

Y ��f� = a��
� � 0, �15�

where a is the size of a monomeric unit.
We will extract from the above generating function the

number of weighted configurations of a k-monomer chain.
We do this by calculating the coefficient of zk in the power-

series expansion of the generating function, which we take to
be given by the last line of Eq. �11�. The actual calculation
makes use of Cauchy’s theorem �25� and involves the fol-
lowing contour integration:

1

2�i
� G̃�z,q = 0,f�

zk+1 dz , �16�

where the contour is as illustrated on the upper left-hand side
of Fig. 2. The evaluation of the integral involves the distor-
tion of the integration contour, as indicated in the lower
right-hand side of Fig. 2, so as to enclose the singularities in
the generating function. The figure illustrates the result of
that distortion when the singularities are two simple poles. In
our case, the generating function possesses a single pole,
which lies on the real axis. When there is more than one
singularity, the dominant contribution arises from the singu-
larity that lies closest to the origin. In fact, in the thermody-
namic limit k→�, effectively the only contribution that mat-
ters is the one generated by the singularity closest to z=0.
This is not an issue in the calculation performed here, but it
will be as we consider the mathematics of melting as embod-
ied in the Poland-Scheraga model and modifications thereof.

Continuing, we note, as indicated immediately above, that
the contour integration is dominated by the single contribu-
tion at the pole in the function on the last line of Eq. �16�,
with q=0, corresponding to the solution of the equation

1 − z/z0 = 0. �17�

Inserting this solution into the result of the contour integra-
tion illustrated in the lower right-hand corner of Fig. 2 and
making note of the residue, we end up with the following
result for the total number of weighted k-monomer configu-
rations when the polymer is subjected to the externally gen-
erated tension f:

FIG. 2. The contours utilized in the evaluation of the integral,
Eq. �16�, leading to the extraction of the kth power of z in the
expansion of the generating function. Upper left-hand side: the
original contour, consistent with the extraction of that coefficient
via Cauchy’s theorem. Lower right-hand side: the distortion of the
original contour to enclose singularities of the integrand—in the
illustrated case simple poles—located at the heavy dots in the
figure.
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1

2�i
� G̃�z,q = 0,f�

zk+1 dz → � sinh f

f
�ka/l

. �18�

A. Corrections for excluded volume: One-loop order

We can now assess the interplay of this externally gener-
ated tension and self-avoidance in influencing the asymptotic
statistics of an excluded volume Gaussian polymer. A way to
assess this interplay is to consider the lowest-order correction
to the generating function, as shown in Fig. 3.

The one-loop correction corresponds to the expression

u� G̃�z,q,f�dq�dq� = u� �1 − z/z0 + X�q�
2 + X�q�

2

− iY �q��−1dq�dq�

� u� d3q

1 − z/z0 + Y �
2/4X� + q2

� u�A�z� − �1 − z/z0 + Y �
2/4X�� ,

�19�

where u is the coupling constant measuring the strength of
the repulsive interaction. A�z� is a singularity-free function of
z. The next-to-last line in Eq. �19� follows from a shift in the
contour of integration over the component of q parallel to f.

The outcome of this calculation is that the one-loop cor-
rection to the effective self-energy of the generating function
of the excluded volume yields an expression having the form

G̃�z,q,f� = �1 − z/z0 + X�q�
2 + X�q�

2 − iY �q� + uA�z�

− u�1 − z/z0 + Y �
2/4X��−1. �20�

Setting q=0, in order to locate the singularity that dominates
a calculation of the total number of weighted configurations,
we find

G̃�z,q = 0,f� = �1 − z/z0 + uA�z� − u�1 − z/z0 + Y �
2/4X��−1.

�21�

The singularity in the function, if u is sufficiently small, is
slightly shifted from the unrestricted value.

However, the singularity of the one-loop contribution is
given by

zc = z0�1 + Y �
2/4X�� . �22�

In the weak-force limit it is equal to

zc = z0�1 +
1

6

a

l
f2� . �23�

In particular, the singularity in the generating function
remains closer to the origin than the singularity in the one-
loop contribution in Eq. �19�. This means that the latter sin-
gularity will not have an effect on the asymptotic statistics of
the polymer chain under tension, in contrast to the situation
of the unstretched chain, for which the one-loop correction
for self-avoidance exerts an essential, and transforming, in-
fluence on asymptotic configurational statistics. The shift is
indicated in Fig. 4.

B. Two-loop-order correction

The next obvious question is whether this difference be-
tween the singularity structure of the corrected generating
function and the singularities of the corrections persists to
higher loop order. A cursory investigation of the general
structure of such contributions to asymptotic configurational
statistics indicates that, if the strength of the self-avoiding
interaction is low enough, the singularity structure of higher-
loop-order corrections will not lead to an essential renormal-
ization of loop statistics.

As the argument utilized here is based on the structure of
excluded-volume corrections in real space, we begin with the
form of the generating function in real space, the inverse

Fourier transform of G̃�z ,q� ,q� , f�. We find for this quantity

G�z,R,f� �� e−i�q�R�+q�R��dq�dq�

1 − z/z0 + X�q�
2 + X�q�

2 − iY �q�

�
1

r
exp− r�1 −

z

z0
+

Y �
2

4X�

+
Y �r�

2�X�

� , �24�

where we have introduced a new variable

r = �r�,r�� = � R�

�X�

,
R�

�X�

� . �25�

In particular, in the limit of weak forces f 	1, we find at first
order in f

FIG. 4. At lowest nontrivial loop order, the original singularity
in the generating function for q=0 at z=z0 �black circle� is shifted a
distance O�u� to the right �cross� and lies closer to the origin than
the singularity in the one-loop correction at z=zc �open circle�.

FIG. 3. The first-order correction to the generating function aris-
ing from excluded volume. The dashed line is the effective repul-
sive interaction arising from self-avoidance.
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X� = X� = la/6, Y � = af/3 �26�

and

G�z,r,f� �
efr cos /le−r�1−z/z0+f2a/6l�6/al

r
, �27�

where we assumed that the force is in the ẑ direction.
The real-space version of the one-loop self-energy shown

in Fig. 3 can be reproduced to within nonsingular contribu-
tions by allowing r to become very small in Eq. �27�, looking
in particular at the zeroth order in r terms in the resulting
expression. Expanding the result in powers of r, we find for
the one-loop correction

1

r
+ �6/al�1 − z/zc +

f cos 

l
+ O�r� , �28�

where zc is given by Eq. �23�.
Note that the next to last term in Eq. �28� depends on the

direction in which the displacement vector points. This con-
tribution is, in fact, a singular one, in that it is indeterminate
in the limit r=0. However, the averaging inherent in com-
pensating for self-intersection is over directions, which
means that we must take the angular average �cos �, which
is equal to zero. We thus recover the singular portion of the
one-loop correction as proportional to �1−z /zc, as we did in
the previous section.

We now turn to the two-loop self-energy. Figure 5 illus-
trates the most interesting two-loop term. The structure of
this figure is fairly straightforward. It has the spatial Fourier
transform

u2� eiq·rG�z,r,f = 0�3d3r . �29�

As the dominant issue for us is the way in which this correc-
tion affects the total number of configurations, we are inter-
ested in the q=0 limit of the above expression. Inserting Eq.
�27� into Eq. �29�, with f set equal to zero, we obtain the
following result for the two-loop self-energy:

� u2� � e−r�1−z/z0+f2a/6l�6/al

r
�3

d3r . �30�

When there is tension, the integrand in Eq. �30� is re-
placed by the one that contains a Boltzmann factor associ-
ated with the applied forces. The integral to perform in this
case is

� u2� d��
r0

�

r2dr� e−r�1−z/z0+f2a/6l�6/al

r
�3

efr�/l. �31�

Carrying out the integrations, we end up with the following
result for the two-loop self-energy associated with the dia-
gram in Fig. 5:

� u2 1

r0
�G��3�6/al�1 − z/z0 + f2a/6l − f/l�r0�

− G��3�6/al�1 − z/z0 + f2a/6l + f/l�r0�� , �32�

where

G�x� = e−x + x Ei�− x� . �33�

Taking the r0→0 limit of Eq. �32�, we find that there is a
singularity of the form w ln w, where

w = 3�6/al�1 − z/z0 + f2a/6l � f/l . �34�

This tells us that the leading-order singularity in the two-loop
self-energy lies on the following location on the real z axis:

z = z0�1 + 4f2a/27l� . �35�

This is to the left of zc=z0�1+ f2a /6l�, but further from the
origin than z0, the leading singularity of the unrestricted lin-
ear chain polymer under the influence of tension, as given by
Eq. �12�.

A simple—but we believe essentially correct—argument
holds that the energy penalty associated with the necessity of
looping back against the tension that is required for self-
intersection militates against a fundamental alteration of con-
figurational statistics when corrections are made for excluded
volume. For a more extended discussion, see Appendix B.

III. EFFECT OF SELF-AVOIDANCE ON THE
DENATURATION BUBBLE

In the case of the melting DNA chain, there is one way in
which self-avoidance exerts a fundamental influence on the
statistics, and thereby the thermodynamics, of the system.
This is through the modification of the contribution of the
denaturation bubble to the partition function of the system.
As noted previously, configurations in which self-
intersection requires that the chain loop back on itself, in
opposition to the imposed tension, are, by reason of the en-
ergy penalty associated with such a configuration, rendered
irrelevant to the asymptotic statistics of thermal denaturation.
This means that the vertex correction found by Kafri et al.
�6� to cause melting to become first order in the absence of
tension plays no such transformative role when that tension
is present. However, intersections of the two strands in the

FIG. 6. The denaturation bubble with corrections for self-
interaction incorporated. Dotted lines show the repulsive interac-
tions between the strands.

FIG. 5. The two-loop insertion.
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denaturation bubble as shown in Fig. 6 must be taken into
account in the evaluation of the partition function sum of the
melting chain.

In the denaturation bubble there are an equal number of
units in its lower and upper chains. To enforce this condition
in the context of the calculation that we perform below, we
assign different fugacities z1,2 to the units in the two strands
in the bubble. The relation between resulting generating
function of the, in general, asymmetric loop F�z1 ,z2� and the
generating function representing the denatured loop is the
following:

��z� =
1

2�i
� dw

w
F�w�z,

�z

w
� , �36�

where the contour of integration is around the origin. Indeed,
by definition,

F�z1,z2� = 

m



n

Cmnz1
mz2

n, �37�

where Cmn is the partition function of the loop formed by two
chains of n and m units correspondingly.

Then according to Eq. �36�, the generating function of the
denaturation bubble becomes

��z� =
1

2�i


m



n

Cmn�
C

dw

w
�w�z�m��z

w
�n

= 

m



n

Cmnzm/2zn/2 1

2�
�

0

2�

d�ei�m−n��

= 

m



n

Cmnzm/2zn/2�mn = 

n

Cnnzn, �38�

which shows that ��z� is indeed the generating function of a
bubble with equal number of units in each chain. In the sec-
ond line of Eq. �38� we have deformed the contour of inte-
gration to a unit circle with the center at the origin. To ac-
count the possible interactions of the two chains we need to
perform a Dyson-like summation over the loops formed by
the strands interactions as shown in Fig. 6. Thus the gener-
ating function for the self-interacting denaturation bubble be-
comes

��z� =
1

2�i
� dw

w



n

�

�− u�nFn�w�z,
�z

w
� . �39�

In the next section we derive the closed-form expression for
��z�.

A. Mutual avoidance of two chains in a loop: Performing the
ladder sum

The denaturation bubble under the action of the external
force f behaves as a set of two parallel springs, each spring
under stress f /2. To find the generating function of the loop
we form the integral

F�z1,z2� =� dR�dR�G�z1,R�,R�, f/2�G�z2,R�,R�, f/2� .

�40�

Plugging the last line of Eq. �24� into Eq. �40� yields

F�z1,z2� �� d3r
1

r2exp�− r�1 − z1/z̃0 + y�
2/4x�

− r�1 − z2/z̃0 + y�
2/4x� + r�y�/�x�� , �41�

with

x��f� � X��f/2�, y��f� � Y ��f/2�, z̃0 � z0�f/2� . �42�

The angular integral in Eq. �41� leads to

e−a1r − e−a2r

r3 , �43�

where we have introduced the notation

a1,2 = �1 − z1/z̃0 + y�
2/4x� + �1 − z2/z̃0 + y�

2/4x� � y�/�x� .

�44�

Multiplying Eq. �43� by r2 and integrating from r=0 to � we
obtain

�
0

� e−a1r − e−a2r

r
dr . �45�

The integral in Eq. �45� can be rewritten as

�
0

�

dr�
a1

a2

e−wrdw� . �46�

Exchanging the orders of integration, we are left with

ln
a2

a1
. �47�

Applying this procedure to the integral in Eq. �41�, we obtain
the expression

F�z1,z2� �
�x�

y�

ln��1 − z1/z̃0 + y�
2/4x� + �1 − z2/z̃0 + y�

2/4x� + y�/�x�

�1 − z1/z̃0 + y�
2/4x� + �1 − z2/z̃0 + y�

2/4x� − y�/�x�

	 . �48�

Plugging z1=�zei and z2=�ze−i into Eq. �48� and expanding in power series of  we obtain

��1 − �zei/z̃0 + y�
2/4x� + c.c.� − y�/�x� = 2�1 + 2��1 − �z/z̃0 + y�

2/4x� − y�/�x� , �49�
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where “c.c.” stands for “complex conjugate.” In the second
line of Eq. �49� we have rescaled the variable .

Denoting �=1−z / z̃0
2 and expanding Eq. �49� with respect

to � we end up with

y�/�x� + � + 22 − y�/�x� � � + 2, �50�

where, once again, we have rescaled the variable .
Performing the geometric sum in Eq. �39� and using the

results of the expansion in Eq. �50� we obtain the following
expression for the denaturation bubble generating function:

�
0

0 d

1 + Au − u ln�� + 2�
, �51�

where 0 is the yet-unspecified upper limit. A�z� is a
singularity-free function of z. In Eq. �51� we have arranged
the contour to pass between the pole of the integrand in Eq.
�51� and the branch point at

z̃0
2 = � f/2

sinh f/2�
2a/l

. �52�

A route to the determination of the behavior of this integral
when � is small is to take the derivative of the integral in Eq.
�51� with respect to �. Once the integral that results is evalu-
ated, one integrates with respect to � to reconstruct the inte-
gral of interest. The � derivative is straightforward and re-
sults in

�
0

0 d

�1 + Au − u ln�� + 2��2

u

� + 2 . �53�

In the case of this integral, we can extend the upper limit of
integration to infinity without encountering a divergence. Re-
placing the integration variable  by y= /�, we are left with
the following integral:

u
��
�

0

� dy

�1 + Au − u ln � − u ln�1 + y2��2

1

1 + y2 . �54�

When �u ln ��
1, the dominant contribution to the integrand
in Eq. �54� is

u
��
�

0

� dy

�1 + Au − u ln ��2

1

1 + y2

=
�

2

u
��

1

�1 + Au − u ln ��2 →
�

2

u
��

1

u2 ln2 �
. �55�

It is now possible to integrate the expression above with
respect to �. This leads to the result

1

u
�Ei� ln �

2
� −

��

ln �
	�

2
, �56�

where “Ei” is an exponential integral. Expanding the above
result with respect to � when that quantity is small, we find

�

2u
� 8

�ln ��3 +
2

�ln ��2��� , �57�

which tells us that as �→0, the ladder diagram sum will be
dominated by terms going as

��

�ln ��2 . �58�

Equation �58� tell us that self-avoidance leads to a logarith-
mic modification of the contribution of the “unrestricted”
denaturation bubble.

IV. NET EFFECT OF STRESS ON THE MELTING
TRANSITION

According to the Poland-Scheraga model �2,3�, one can
construct the grand-partition function of the denaturing chain
by taking the geometric sum of sequences of intact portions
and denatured bubbles. If we call the grand-partition function
of an intact chain G�z� and the grand-partition function of a
bubble ��z�, then the overall grand-partition function is

G�z� + G�z���z�G�z� + G�z���z�G�z���z�G�z� + ¯

=
G�z�

1 − G�z���z�
=

1

G�z�−1 − ��z�
. �59�

We model both double stranded �ds� and single stranded
�ss� chains of DNA as freely jointed chains with different
unit lengths to take into account the greater flexibility of a ss
chain.

The grand-partition function of the double-stranded seg-
ment of the molecule is

G�z� = 

k
� z

zds
�k

= �1 −
z

zds
�−1

, �60�

where the summation runs over monomeric units. The criti-
cal fugacity of the ds chain zds in Eq. �60� is given by

zds�T,F� = e−�g/kBT� Flds/kBT

sinh Flds/kBT
�dds/lds

, �61�

where dds is the distance between adjacent base pairs in the
ds segment and lds is the Kuhn length of the ds segment.
�g=gss−gds is the difference of Gibbs free energies per base
pair. The second factor in Eq. �61� is associated with the
configurational entropy of the ds chain �cf. Equation �18��.

For the generating function of the denaturation bubble,
according to Eq. �58�, we have

��z� �
�1 − z/zss

�ln�1 − z/zss��2 , �62�

where zss is the critical fugacity of ss segment. From Eq. �52�
it follows that

zss�T,F� = � Flss/2kBT

sinh Flss/2kBT
�2dss/lss

, �63�

where lss is the Kuhn length of an ss segment and dss is the
distance between adjacent bases in an ss segment.

Strand separation occurs when the simple pole of the gen-
erating function of the DNA chain, Eq. �59�, coincides with
the branch point of ��z� function, which results in the rela-
tion
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zds�T,F� = zss�T,F� . �64�

Solving Eq. �64� numerically, we generate the phase diagram
curve displayed in Fig. 7. An interesting feature of the phase
diagram, as was also discussed in �20�, is the presence of a
turning point where dT /dF changes sign.

The relation between the strain and stress for the freely
jointed chain of link length l is given by �24�

�L

L
=

�R�
Nl

= coth x −
1

x
, x =

Fl

kBT
. �65�

In the limit of weak forces the chain’s response to stress is
linear, with effective spring constant

kef �
kBT

Nl2 . �66�

Since this spring constant is inversely proportional to the
chain’s length, a weak force aligns longer chains more easily
than shorter ones. Thus the double-stranded state of the DNA
is more favorable than the denatured one in the weak-force
limit. As the force increases in strength, the difference of
stretching per base pair of ds and ss chains decreases and
becomes negative. This is the point at which dT /dF changes
sign. At large forces, when the molecule is stretched nearly
to its contour length, the denatured state is energetically
more favorable. The distance between neighboring bases in a
ss chain is greater than in the ds state due to unstacking of
base pairs. Breaking a base pair makes the molecule longer,
thus reducing its potential energy −FL.

Next, we turn to the thermodynamic behavior of the sys-
tem at the melting transition. In the thermodynamic limit
�N→�� the free energy of the chain is dominated by the
singularity of the generating function closest to the origin.
Thus for the free energy per monomeric unit of the DNA
chain we have

FN/N � ln zpole�T,F� , �67�

where zpole�T ,F� is the pole of the DNA-generating function,
Eq. �59�.

To explore the behavior of the heat capacity of DNA in
the close vicinity of the phase transition at Tc�F� we approxi-
mate the denominator of Eq. �59�:

D�z� = 1 −
z

zds�T,F�
+ �

�1 − z/zss�T,F�
�ln�1 − z/zss�T,F���2 . �68�

Here the constant � represents an effective cooperativity pa-
rameter which we do not evaluate here.

Expanding the critical fugacity for ds segments of the
chain to first order in the reduced temperature t= �T−Tc� /Tc
while keeping the force F as a parameter,

zds�T,F� = �zds�Tc,F� + Tc
�zds�T,F�

�T
�

Tc

t , �69�

for the denominator D�z�, we find

D�z� = 1 −
z

zds�Tc,F�
+ A�F�t + �

�1 − z/zss

�ln�1 − z/zss��2 , �70�

where

A�F� = �Tc�F�
�zds�T,F�

�T
�

Tc�F�
. �71�

To simplify even further, we neglect the term 1−z /zds in Eq.
�70� in comparison with the rightmost term in Eq. �70� and
rescale the reduced temperature

t̃ � A�F�t/� , �72�

thus obtaining for the denominator D�z�

D�z� � t̃ + ��/�ln ��2, �73�

where we have denoted

� = 1 − z/zss�T,F� . �74�

Setting the denominator D�z� in Eq. �73� to zero and solving
for � iteratively we find

� = t̃2�ln ��4 → t̃2�ln t̃2�4 = 16t̃2�ln t̃�4. �75�

Taking the second derivative of Eq. �75� with respect to t we
find that the heat capacity near the critical point goes as

C � �ln t�4. �76�

If we denote by z1 and z2 fugacities associated with ds and ss
segments in the denominator of the DNA-generating func-
tion

D�z1,z2� = 1 − z1/zds�T,F� + �
�1 − z2/zss�T,F�

�ln�1 − z2/zss�T,F���2 ,

�77�

then the fraction of the denatured base pairs, �, can be de-
termined �26� as

0 20 40 60 80 100
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T
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C
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bound

denatured

FIG. 7. The phase diagram: critical temperature vs the applied
force F. The following parameters were used: distance between
adjacent bases of ss chains, dss=0.58 nm, and of ds chains, dds

=0.34 nm; persistent length of an ss chain, 0.7 nm, and of a ds
chain, 50 nm; �g=�h−T�s, with �s=12.5kB, �h=Tc�s, and Tc

=360 K �19�.
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�

1 − �
= �−

z

D�0,z�
�

�z
D�0,z��

zpole

, �78�

where the right-hand side of Eq. �78� is evaluated at the pole
of the DNA-generating function, Eq. �59�.

In Fig. 8 we plot the fraction of the denatured base pairs
for various values of the cooperativity parameter �.

V. CONCLUSIONS

We have considered the denaturation of double-stranded
DNA under the applied stress within the Poland-Scheraga
�PS� model �2,3�. In its original formulation, the PS model
predicts a melting phase transition. Depending on the value
of the loop exponent p, the phase transition can be first or
second order. In turn, this exponent is modified by the self-
avoidance of the denaturation loop with itself and the rest of
the chain �6�.

We find that external stress transforms the action of self-
avoiding interactions. In particular, because of the externally
applied stress, it is energetically unfavorable for the loop to
interact with the rest of the chain, while for the self-
intersections within the denaturation bubble, only a subset of
interaction configurations gives a sizable contribution to the
loop’s generating function. This results in a new analytical
form for the loop’s generating function, Eq. �62�. As a con-
sequence, the phase transition acquires a new signature; the
heat capacity of the DNA chain behaves logarithmically in
the vicinity of the phase transition �see Eq. �76��.

The key feature of biological DNA that complicates dis-
cussions of its thermal denaturation is the inherent inhomo-
geneity of its structure, the result of the fact that the base-pair
sequence is necessarily nonuniform. As has been noted pre-
viously �14� and as we demonstrate in Appendix C, the Har-
ris criterion �13� applies with regard to the relevance of this
inhomogeneity, which can be treated as effectively random
in the context of the denaturation process. Given the loga-
rithmic modification of the specific heat at the melting tran-
sition induced by self-avoidance when there is melting under
stress, we find that inhomogeneity is relevant in three dimen-

sions and will thus alter the asymptotic behavior of the sys-
tem at and in the immediate vicinity of the transition. Pre-
cisely what sort of change the inhomogeneity induces has
been investigated �14,27–29�; further study will no doubt
prove valuable.
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APPENDIX A: THE DISTRIBUTION FUNCTION

The end-to-end probability distribution in Eq. �2� can be
simplified to �30�

PN�R,F� �
ieF·R/kBT

4�2l2R
�

−�

�

d� �e−iR�/l� sin �

�
�N

. �A1�

The integral in Eq. �A1� can be evaluated with the use of the
saddle-point approximation �30�:

PN�R,F� �
1

�2�l2N�3/2
x̄2

��1 − � x̄

sinh x̄
�2

�expN� Fl

kBT
�� + ln� sinh x̄

x̄
e−�x̄�	� ,

�A2�

where �=R /Nl and �� =R� /Nl is the component of � parallel
to the force. x̄ is a solution of the equation

coth x̄ −
1

x̄
= � , �A3�

where � is the magnitude of �.
In the following we will use the notation

f �
Fl

kBT
. �A4�

To find where the function PN�R ,F� peaks we look for the
extremum of the argument of the exponential in Eq. �A2�:

����,��� = f�� + ln� sinh x̄

x̄
e−�x̄	 , �A5�

with

� = ���
2 + ��

2 . �A6�

Thus we obtain

�����,���
���

= 0 ⇒ ��
� = 0, �A7�
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FIG. 8. Fraction of the denatured base pairs � vs temperature T
at the force F=65 pN for various values of the cooperativity pa-
rameter �. The physical parameters are the same as in Fig. 7.
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�����,���
���

= 0 ⇒ ��
� = �� = coth f −

1

f
. �A8�

Expanding the function PN�R ,F� about the maximum of �
to the second order in �−�� we arrive at

PN��, f� � � sinh f

f
�N

expN

2
���,��

�2� ��
2 �

�expN

2
���,��

�2� ��� − ��
��2� , �A9�

where the functions �����

�2� �f� and �����

�2� �f� are

�����

�2� = ��2����,���
���

2 �
��

�,�
�
�

=
f2 sinh2 f

f2 − sinh2 f
, �A10�

�����

�2� = ��2����,���
���

2 �
��

�,�
�
�

=
− f2

f coth f − 1
. �A11�

APPENDIX B: HIGHER-ORDER CORRECTIONS TO THE
STATISTICS OF AN EXCLUDED-VOLUME POLYMER

UNDER TENSION

The essence of the analysis of higher-order corrections
and their effect on the analytical structure of the generating
function of a strand of DNA under stress is based on the
argument that infrared singularities in the generating func-
tion arise from the large-distance behavior of the real-space
propagator and, in particular, from integrations over large
separations in the multiple integrals represented by
perturbation-theoretical diagrams. Consider, for instance, the
diagram pictured in Fig. 9. Consider, in particular, the vertex
of that diagram indicated by the dashed circle. The contribu-
tion to the singularity structure of that diagram of interest to
us results from the integration over the position of that ver-
tex. The influence of the external tension on the statistics of
the walk is encoded in factors of the form exp�f · �ri−r j��,
where i and j are the indices of the vertices at the “head“ and

“tail” ends of a propagator line. As a given diagram consists
of a single path broken into segments, each of which is a
propagator line, the product of those factors is the overall
exp�f ·R�, where R is the displacement vector from the “tail”
to the “head” of the DNA strand. This means that vertex 4 is
associated with the product of factors

exp�f · �r4 − r1 + r3 − r4 + r4 − r3 + r2 − r4�� . �B1�

This tells us that the force has no direct influence on the
integration over the real-space position of vertex 4. The prin-
cipal contributions to the integration will be of the general
form

exp − �6/al�1 − z/z0 + f2a/6l��r4 − r1�+ 2�r4 − r3� + �r4 − r2�� ,

�B2�

where multiplicative factors that are independent of r4 have
been omitted. When r4 is sufficiently large, the key contribu-

tions go as e−�6/al�1−z/z0+f2a/6l�r4�, with prefactors that are poly-
nomial in r4. Whatever singularity results from the integra-
tion over r4 arises from the coefficient �1−z /z0+ f2a /6l in
the exponent, which means that the contribution to the sin-
gularity structure in the complex z-plane is at zc in Fig. 4,
which is, as noted previously, farther from the origin than the
principal singularity in the generating function for the stress-
affected propagator.

All vertices to be integrated over will be of the kind dis-
cussed immediately above, with the exception of the vertex
labeled 2 in Fig. 9, the analysis of which parallels the dis-
cussion in Sec. II B. Thus, for this diagram—and we believe
to all orders in perturbation theory—the effects of self-
intersection are asymptotically negligible.

APPENDIX C: DEMONSTRATION OF THE RELEVANCE
OF DISORDER TO THE MELTING TRANSITION

IN DNA

The demonstration in this appendix should be seen as a
recapitulation and extension of the discussion by Monthus
and Garel �14�. In order to assess the effects of inhomogene-
ity on the statistics of the melting transition, we make use of
the fact that the “disorder” associated with the distribution of
base pairs is quenched rather than annealed, in that the base
pairs are effectively frozen into place and do not rearrange in
response to free energy gradients. In this case, the appropri-
ate disorder average to take is over the free energy, or the
logarithm of the partition function, rather than the partition
function itself. We then make use of the standard and useful
identity

ln a = lim
n→0

an − 1

n
. �C1�

In order to evaluate the right-hand side of �C1� we raise the
partition function of denaturing DNA to the nth power. Then,
consider the disorder at a given site, which is assumed to be
on average equal to zero and which has a Gaussian distribu-
tion. Figure 10 illustrates the result of the disorder averaging
of this disorder. The dots on the lines indicate the disorder

FIG. 9. Upper left: diagram contributing to the self-energy of
the propagator for a double strand of DNA subject to an external
stress. The numbers index the vertices in the diagram. Lower right:
expanded view of the vertex labeled 4. The arrows indicate the
“sense” of the strand, and the heavy dashed line is the effective
repulsive interaction associated with the self-intersection occurring
at the vertex.
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that is averaged. This disorder represents a departure from
the average value of, say, the binding energy of the base
pairs.

To complete the process associated with disorder averag-
ing, it is necessary to calculate the number of ways in which
n lines can be picked out and paired. This is just n�n−1� /2.
If we divide the result of this by n and then set n equal to
zero, we end up with the result depicted in Fig. 11. The
diagonal line in the figure represents division. The figure
stands for the combination

A

g0�z�2 . �C2�

There are two powers of the unaveraged grand-partition
function in the denominator because the original expression
had two powers of the partition function in the pair that is
impurity averaged and the total power of g is, in the end,
equal to zero.

We now consider the mathematical structure of the ex-
pression A in �C2�. It corresponds to two strands of DNA on
each of which there is an “impurity potential” on one of the
sites. Because the quantity being averaged is the grand-
partition function, the length of the strands beyond the com-
mon site containing the impurity potential is variable. That
is, for each strand in that pair, we sum over all lengths be-
yond the point at which there is an impurity potential. Not
only that, each sum is independent. This means that we are
left with two strands that have the same number of sites to
the left of the impurity potential, but for which the number of
sites to the right can vary. Because of this, the expression A
corresponds figuratively to a diagram like the one shown in
Fig. 12 multiplied by g0�z�2. This multiplicative factor is
canceled by the g0

2 in the denominator of �C2�. Thus, the
ratio in �C2� is pictorially represented by the diagram in Fig.
12.

As the next step, we turn to the expression represented by
Fig. 12. The important characteristic of this expression is that

the numbers of sites in each of the two strands leading up to
the common disordered pair are equal. However, we are still
performing a grand-partition function sum. This means that it
is necessary to work out how to extract the subset of terms in
the two-strand sum corresponding to the same number of
base pairs in each strand. That is, it does not suffice to simply
take the product of two grand-partition functions together.
Progress can be made once one accepts that the principal
contributions arise from the pole in the partition function that
is closest to the origin.

We start with the Poland-Scheraga propagator �2,3�

1

− t + �zc − z�p . �C3�

Here, we retain terms that dominate the analysis under the
assumption p�1 �the transition is continuous�. For analyti-
cal convenience we set all coefficients to 1. We assume that
the system is below the melting temperature; the temperature
is thus explicitly taken to be negative. The pole in the propa-
gator in �C3� is at

z = zc − t1/p � zc�t� . �C4�

Now, let z=zc�t�−�. Then, the propagator becomes

1

− t + �zc − zc + t1/p + ��p =
1

− t + t�1 + �t−1/p�p

=
1

p�t1−1/p + O��2�
→

t�1−p�/p

p�
.

�C5�

This tells us that the residue at the pole goes as t�1−p�/p.
The proper combination of the two partition functions

corresponding to the replicas pictured in Fig. 12 is repre-
sented as the sum

t2�1−p�/p

p2 zc�t�−2

n=0

� � z

zc�t�
�2n

=
t2�1−p�/p

p2

1

zc�t�2 − z2

=
t2�1−p�/p

p2

1

�zc�t� − z��zc�t� + z�
.

�C6�

Given that we are interested in the behavior of this expres-
sion in the immediate vicinity of the singularity at z=zc�t�,
we are left with a lowest-order contribution to the effect of
disorder on the partition function that is proportional to

FIG. 10. The averaging process. The left-hand side of the figure
depicts the n lines generated by taking the nth power of the partition
function of a melting strand of DNA, the large dots representing the
disorder on a particular site. The right-hand side of the figure de-
picts the result of the averaging of this disorder over an ensemble.

FIG. 11. The result of the disorder averaging of the nth power of
the grand-partition function of denaturing DNA after dividing by n
and setting n=0.

FIG. 12. The diagrammatic result of dividing A by g0�z�2 as in
Eq. �C2�.
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t2�1−p�/p

zc�t� − z
. �C7�

If we assume that this amounts to a modification of the ar-
gument of the logarithm in the free energy, we have a new
free energy that goes as

ln�zc�t� − z + At2�1−p�/p� = ln�zc − t1/p + At2�1−p�/p − z� .

�C8�

In order that the disorder have a vanishingly small effect on
the behavior of the free energy, one demands that when t is
very small, t2�1−p�/p	 t1/p or 2�1− p� / p� p. Solving for p, we
see that this is equivalent to requiring p�1 /2. Now, the free
energy of the model is controlled by the behavior of zc�t�,
which means it goes as t1/p. Thus, the specific heat—the
second temperature derivative of the free energy—goes as
t−2+1/p� t−�. This tells us that the specific-heat exponent is
given by �=2−1 / p. If p�1 /2, then ��0. Thus, in order
for the disorder to be irrelevant, we must have ��0. Other-
wise, the disorder cannot be ignored. Note that this bench-
mark for the relevance of disorder to the thermodynamics of
the melting transition is consistent with the Harris criterion
�13�.

1. Effect of logarithms

Given the results of Sec. III A, we see that the power p
that one associates with the melting transition in the presence
of a force is p=1 /2, with a logarithmic correction. That is,
the corresponding propagator goes as

1

− t + �zc − z�1/2/�ln�zc − z��2 . �C9�

The pole of this propagator will be at z−zc−�, where

�1/2

�ln ��2 = t . �C10�

An iterative solution to Eq. �C10� yields

� = t2�ln ��4 → t2�ln t2�4 = 16t2�ln t�4. �C11�

We then write z=zc−�−� and calculate the residue by ex-
panding the following in �:

�− t +
�16t2�ln t�4 + ��1/2

�ln�16t2�ln t�4 + ���2�−1

→ �− t + t�1 +
1

32

�

t2�ln t�4�	−1

�
t�ln t�4

�
. �C12�

This tells us that the residue goes as t�ln t�4.
Once again, we process the disorder term as in �C6�–�C8�,

incorporating it into an altered argument of the logarithm,
and we have a modified free energy going as

ln�zc�t� − z + At2�ln t�8� = ln�zc − t2�ln t�4 + At2�ln t�8 − z� .

�C13�

It is clear that the contribution to the argument of the “dis-
order” term will dominate the shift in the pole in the ordered
model when t is small. This means that disorder is
relevant—if just barely so—for stress-modified melting of
DNA.
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